Applications
- 410000002-BCarbon Black At-line Characterization Using a Portable Raman Spectrometer
In this article portable Raman spectroscopy as an effective tool for at-line characterization of carbon black is presented. Raman spectroscopic analysis can be an effective test to characterize carbon black material, including the structural order.
- 410000059-BCharacterization of carbon materials with Raman spectroscopy
Raman spectroscopy is a valuable tool for the characterization of carbon nanomaterials due to its selectivity, speed, and ability to measure samples nondestructively. Carbon materials typically have simple Raman spectra, but they contain a wealth of information about internal microcrystalline structures in peak position, shape, and relative intensity.
- 8.000.6059Determination of hazardous substances in electrical and electronic equipment
The Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC stipulates maximum limits for the hazardous metals cadmium, lead and mercury as well as the hexavalent chromium and the brominated flame retardants in electrical and electronic products. To ensure compliance, reliable analysis methods are required.This poster deals with the wet-chemical determination of trace concentrations of the six RoHS-restricted substances in a wide variety of materials including metals, electrotechnical components, plastics and wires. After sample preparation according to IEC 62321, the metals lead, cadmium and mercury are best determined by anodic stripping voltammetry (ASV) and the flame retardants PBB and PBDE are quantified by direct-injection ion chromatography (IC) using spectrophotometric detection. Chromium(VI) can be determined either by adsorptive stripping voltammetry (AdSV) or IC. Both methods are very sensitive and meet prescribed RoHS limits.
- 8.000.6063Post-column chemistry for improved optical absorption detection
UV/VIS detection is one of the most sensitive detection techniques in trace-level chromatography. Sometimes, however, spectrophotometric detection lacks sensitivity, selectivity or reproducibility and chemical derivatizations are required. By using Metrohm`s rugged and versatile flow-through reactor, single- or multi-step derivatizations can be done fully automatically, in either pre- or post-column mode at any temperature between 25…120 °C. The variable reactor geometry allows to adjust the reactor residence time of the reactants according to derivatization kinetics. The flexibility of the reactor is demonstrated by optimizing four widespread post-column techniques: the relatively slow ninhydrin reaction with amino acids and the fast derivatizations of silicate, bromate and chromate(VI).
- 8.000.6073Determination of anions in concentrated nitric acid by ion chromatography: the influence of temperature on column selectivity
Determination of chloride and sulfate in the presence of high nitrate concentrations. Optimization of the chromatographic separation by variation of the temperature and eluent composition.
- AB-147Simultaneous trace determination of seven metals in «electronic grade» materials using stripping voltammetry
The metals Cd, Co, Cu, Fe, Ni, Pb, and Zn are determined in the sub-ppb range (limit of detection 0.05 µg/L) by means of stripping voltammetry. The DP-ASV method is used for Cd, Cu, Pb, and Zn whereas Co, Ni, and Fe are determined by means of the DP-CSV method (dimethylglyoxime or catechol complexes).Use of the VA Processor and the sample changer allows automatic determination of the above metal ions in one solution. The method has been specially developed for trace analysis in the manufacture of semiconductor chips based on silicon. It can naturally also be employed successfully in environmental analysis.
- AB-344Automated analysis of etch acid mixtures using the 859 Titrotherm and the 814 USB Sample Processor
This bulletin deals with the automated determination of mixtures of HNO3, HF and H2SiF6 in the range of approximately 200-600 g/L HNO3, 50-160 g/L HF, and 0-185 g/L H2SiF6 using thermometric titration.Etch acid mixtures containing HNO3, HF and H2SiF6 from the etching of silicon substrates can be analyzed in a sequence of two determinations using the 859 Titrotherm. The first determination involves a direct titration with standard c(NaOH) = 2 mol/L, followed by a back titration with c(HCl) = 2 mol/L. This determination yields the H2SiF6 content plus a value for the combined (HNO3+HF) contents. The second determination consists of a titration with c(Al3+) = 0.5 mol/L to determine the HF content. For freshly made up mixtures of HNO3 and HF containing no H2SiF6, a linked two-titration sequence is employed. Results from the two determinations are used by tiamoTM to yield individual results for HNO3, HF and H2SiF6.
- AB-435Connection of the Eco Titrator to the PC
Eco Titrators provide the capability to send PC/LIMS reports directly to a PC. This feature is mainly used to transfer data to an external LIMS system or to simply store the data in a digitally on the PC. Additionally, it is possible to control the Eco Titrator by RS232 commands if the connection is set up according to the procedure described below.The data transfer from the Eco Titrator to a PC can be done by a software- or a hardware-based option. Additional accessories are needed for the hardware-based option whereas for the software-based option two additional softwares must be installed. Both solutions are described in this document.
- AB-444Installation instruction: MVA-24 – 884 Professional VA fully automated for CVS with 858 Professional Sample Processor and Dosino sample transfer
This Application Bulletin contains installation instructions for the MVA-24 CVS setup used to measure suppressors, brighteners, and levelers in plating solutions.
- AN-C-149Determination of cations on surfaces of printed circuit boards
Cleanliness is indispensable in electronics production. Ionic contaminations in particular lead to a drastic worsening of the quality of the printed circuit boards. The present Application Note describes the determination of cations on printed circuit board surfaces. The intelligent Partial Loop Injection Technique (MiPT) used for this purpose permits the determination of cations and anions in the same sample. The determination of the anions is described in AN-S-317.