

Application Note AN-NIR-106

利用近外光非性甜味行量控制

NIRS gives mixture analysis results within one minute

The use of non-nutritive sweeteners as sugar substitutes in foodstuffs has risen dramatically in the last decade, e.g., in soft drinks and snacks. Two examples are sucralose, a halogenated sucrose derivative, and Stevia, derived from the leaves of the *Stevia rebaudiana* plant. Both are much sweeter than sugar and are used in much lower concentrations in foodstuffs. To ensure food safety, regulations for non-nutritive sweeteners are becoming stricter. Several analytical methods are available to determine various sweeteners using, e.g., highperformance liquid chromatography (HPLC), ion chromatography, and thin-layer chromatography. However, these methods are time-consuming and incur high running costs. Near-infrared spectroscopy (NIRS) allows the simultaneous determination of several sweeteners in less than one minute without any chemicals or sample preparation.

EXPERIMENTAL EQUIPMENT

Mixtures of both Stevia (0.5–4.5%) and sucralose (0.5–4.5%) in sucrose (95%) were prepared and analyzed to create a prediction model for quantification.

Samples were measured with a Metrohm NIRS DS2500 Solid Analyzer (**Figure 1**) using 15 mm

disposable vials, a DS2500 holder, and a DS2500 Iris in reflection mode. The Metrohm software package Vision Air Complete was used for all data acquisition and prediction model development.

Table 1. Hardware and software equipment overview.

Equipment	Article number
DS2500 Solid Analyzer	2.922.0010
DS2500 Iris	6.7425.100
Disposable vials, 15 mm	6.7402.110
Vision Air 2.0 Complete	6.6072.208

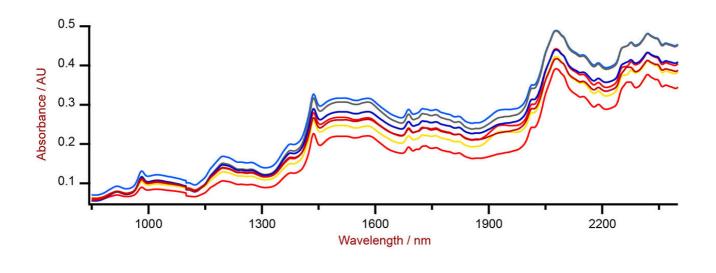


Figure 1. Metrohm NIRS DS2500 Solid Analyzer used to determine Stevia and sucralose content in sucrose mixtures.

RESULT

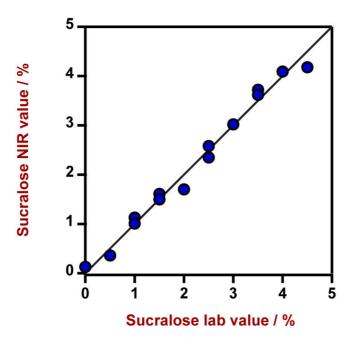

All measured Vis-NIR spectra (Figure 2) were used to create a prediction model for quantification of sucralose and Stevia in sucrose. The quality of the prediction models was evaluated using correlation diagrams which display a very high correlation between the Vis-NIR prediction and the reference values. The respective figures of merit (FOM) display the expected precision of a prediction during routine analysis (**Figures 3–4**).

Figure 2. Selection of Vis-NIR spectra of Stevia and sucralose in sucrose samples which were analyzed on a DS2500 Solid Analyzer.

RESULT SUCRALOSE CONTENT IN SUCROSE

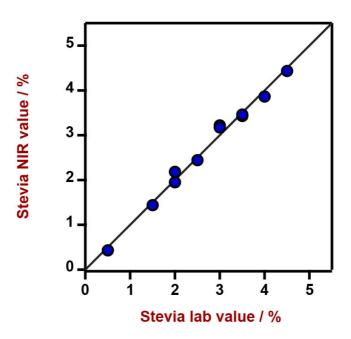


Figure 3. Correlation diagram and the respective figures of merit for the prediction of sucralose content in sucrose using a DS2500 Solid Analyzer. The lab values were determined using HPLC.

Figures of Merit	Value
R ²	0.9854
Standard Error of Calibration	0.1898%
Standard Error of Cross-Validation	0.1997%

RESULT STEVIA CONTENT IN SUCROSE

Figure 4. Correlation diagram and the respective figures of merit for the prediction of Stevia content in sucrose using a DS2500 Solid Analyzer. The lab values were determined using HPLC.

Figures of Merit	Value
R ²	0.9885
Standard Error of Calibration	0.1500%
Standard Error of Cross-Validation	0.1997%

CONCLUSION

This Application Note demonstrates the feasibility to determine the concentration of the non-nutritive sweeteners sucralose and Stevia in sucrose blends with NIR spectroscopy. Vis-NIR

spectroscopy enables fast and cost-effective measurements with high accuracy, thereby offering a suitable alternative to other standard analytical methods (**Table 2**).

Table 2. Time to result overview for the different non-nutritive sweeteners examined in this study.

Parameter	Method	Time to result
Stevia	HPLC	~5 min (preparation) + ~40 min (HPLC)
Sucralose	HPLC	~5 min (preparation) + ~40 min (HPLC)

Internal reference: AW NIR AE10-0002-072021

CONTACT

瑞士万通中国 北京市海淀区上地路1号院 1号楼7702 100085 北京

CONFIGURATION

DS2500 Solid Analyzer 固的近外光,用于生境和室中的量。

m.cn

DS2500 分析是的活解决方案,用于整个生程中的固体 、乳膏和液体行常分析。其固的使 DS2500 Analyzer 分析不受灰、湿度、振和温度波的影,因此 非常用于在劣的生境中使用。

marketing@metrohm.co

DS2500 涵盖了从 400 到 2500 nm 的整个光范,并 能在不到一分内提供准和可再的果。DS2500 Analyzer 足制行的要求,并由于操作便而能助用完成 其日常工作任。

由于与匹配,附件可以承受任何具有挑性的品型,例如 :粒料之的粗粒固体或乳膏之的半固体品,可得果。量 固体的候,使用 MultiSample Cup 可以提高生率,可以 自批量量多 9 个品。

