You have been redirected to your local version of the requested page

Privacy Policy

I allow Metrohm AG and its subsidiaries and exclusive distributors to store and process my data in accordance with its Privacy Policy and to contact me by e-mail, telephone, or letter to reply to my inquiry and for advertising purposes. I can withdraw this consent at any time by sending an e-mail to info@metrohm.com.

This field is required.

Without a titer determination, you will not obtain correct results. The same applies for volumetric Karl Fischer (KF) titrations. In this blog post, I will cover the following topics (click to jump directly to each):

If you are looking for information about titer determinations for potentiometric titrations, then please read our article below.

What to consider when standardizing titrant

Why should I do titer determinations?

Why is a titer determination necessary? The answer is quite simple. Without knowing the titer of a KF titrant, the water content of the sample cannot be calculated correctly. In Karl Fischer titration, the titer states how many mg of water can be titrated with one mL of titrant. Therefore, the KF titer has the unit «mg/mL».

You might say: “Now, ok, let’s determine the titer. That isn’t too much work and afterwards, I know the titer value and I don’t need to repeat the titer determination.

I agree this would be very nice. However, reality is somewhat different. You must carry out titer determinations on a regular basis. In closed bottles, KF titrants are very stable and the titer does not change appreciably. Once you open the bottle, the KF titrant starts to change significantly. Air will enter the bottle, and considering that 1 L of air contains several milligrams of water, you can imagine that this moisture has an influence on the titer. To prevent moist air from getting into the titrant, the bottle must be either tightly closed after use with the original cap, or should be protected with an absorber tube filled with a molecular sieve (0.3 nm).

Temperature changes also have an influence on the titer. A temperature increase of the titrant by 1 °C leads to a titer decrease of approximately 0.1% due to volume expansion. Consider this in case the temperature in your laboratory fluctuates during the working day.

Do not forget: if your titration system is stopped overnight, the reagent in the tubes and in the cylinder is affected and the titer is no longer comparable to the titrant in the bottle. Therefore, I recommend first running a preparation step to flush all tubes before the first titration.

How often should I perform titer determinations?

This question is asked frequently, and unfortunately has no simple answer. In other words, I cannot recommend a single fixed interval for titer determinations. The frequency depends on various factors:

  • the type of reagent (two-component titrants are more stable than single-component titrants)
  • the tightness of the seals between the titration vessel and the titrant bottle
  • how accurate the water content in the sample must be determined

In the beginning, I would recommend performing a titer determination on a daily basis. After a few days, it will become apparent whether the titer remains stable or decreases. Then you can decide to adjust the interval between successive titer determinations.

What equipment do I need for a titer determination?

2020/05/11/kf-titrant-standardization/1

You need a fully equipped titrator for volumetric KF titration, as well as the KF reagents (titrant and solvent).

Another prerequisite for accurate titer determinations is an analytical balance with a minimal resolution of 0.1 mg.

Last but not least, you need a standard containing a known amount of water and some tools to add the standard to the titration vessel.

These tools are discussed in the next section.

How to carry out a titer determination

Three different water standards are available for titer determinations. There are both liquid and solid standards available from various reagent suppliers. The third possibility is available in every laboratory: distilled water. Below, we will take a closer look at the individual handling of these three standards. For determination of appropriate sample sizes, you can download our free Application Bulletin below.

Titer determination in volumetric Karl Fischer titration

2020/05/11/kf-titrant-standardization/5

1. Liquid water standard

For the addition of a liquid water standard, you need a syringe and a needle.

There are two possibilities to add liquid standard. One is to inject it with the tip of the needle placed above the reagent level. In this case, aspirate the last drop back into the syringe. Otherwise, it will be dropped off at the septum. The droplet is included in the sample weight, but the water content in the drop is not determined. This will lead to false results.

If the needle is long enough, you can immerse the tip in the reagent during the standard addition. In this case, there is no last droplet to consider, and you can pull the needle out of the titration vessel without any additional aspiration step.

Step-by-step – how to carry out a titer determination:

  1. Open the ampoule containing the standard as recommended by the manufacturer.
  2. Aspirate approximately 1 mL of the standard into the syringe.
  3. Remove the tip of the needle from the liquid and pull the plunger back to the maximum volume. Sway the syringe to rinse it with standard. Then eject the 1 mL of standard into the waste.
  4. Aspirate the remaining content of the ampoule into the needle.
  5. Remove any excess liquid from the outside of the needle with a paper tissue.
  6. Place the needle on a balance, and tare the balance.
  7. Then, start the determination and inject a suitable amount of standard through the septum into the titration vessel. Please take care that the standard is injected into the reagent and not at the electrode or the wall of the titration vessel. This leads to unreproducible results.
  8. After injecting the standard, place the syringe on the balance again.
  9. Enter the sample weight in the software.

2. Solid water standard

It is not possible to add the solid water standard with a syringe. For this, different tools are required. Here, examples are shown of a weighing boat and the Metrohm OMNIS spoon for paste.

2020/05/11/kf-titrant-standardization/4

Place the weighing boat on the balance, then tare the balance. Weigh in an appropriate amount of the solid standard, and tare the balance again. Start the titration, quickly remove the stopper with septum, add the solid standard and quickly replace the stopper.

When adding the standard, take care that no standard sticks to the electrode or the walls of the titration vessel. In case that happens, gently swirl the titration vessel to wash down the standard.

After the addition of the standard, place the weighing boat on the balance again and enter the sample weight in the software.

2020/05/11/kf-titrant-standardization/3

3. Pure water

Pure water can be added to the titration vessel either by weight or by volume.

For a titer determination with pure water, only a few drops are required. Such small volumes can be difficult to add precisely, and results strongly depend on the user. Moreover, addition by weight requires a balance capable of weighing a few milligrams. I personally prefer using water standards, and suggest that you use them as well.

By weight:

Fill a small syringe (~1 mL) with water. Due to the very small amounts of pure water added for the titer determination, I recommend using a very thin needle to more accurately add small volumes. After filling the syringe, place it on a balance and tare the balance. Then start the titration and inject an appropriate amount of water through the septum into the titration vessel. Aspirate the last droplet back into the syringe. Remove the needle, place the syringe on the balance again, and enter the sample weight in the software.

By volume:

Fill a microliter syringe with an appropriate volume of water. Make sure there are no air bubbles in the syringe, as they will falsify the result. Begin the titration and inject the syringe contents through the septum into the titration vessel. Enter the added sample size in the software.

Acceptable results

During trainings, I am often asked if the obtained result is acceptable. I recommend carrying out a threefold titer determination. Ideally, the relative standard deviation of those three determinations is smaller than 0.3%.

How long can the reagent be used?

As long as you carry out regular titer determinations, the titer change will be considered in the calculation, and the results will be correct. Just keep in mind: the lower the titer, the larger the volume needed for the determination.

Conclusion

I hope I was able to convince you that titer determination is essential to obtain correct results in volumetric Karl Fischer titration, and that it is not that difficult to perform.

In case you still have unanswered questions, please download our Application Bulletin below to get additional information, tips, and tricks on performing titer determination.

Author
Margreth

Michael Margreth

Sr. Product Specialist Titration (Karl Fischer Titration)
Metrohm International Headquarters, Herisau, Switzerland

Contact