The role of process automation in an interconnected world – Part 2
Jul 13, 2020
Article
The following scenario sounds like a fictional dystopian narrative, but it is a lived reality. A catastrophe, much like the COVID-19 crisis, is dramatically impacting society. The normality, as was known before, has suddenly changed: streets are swept empty, shops are closed, and manufacturing is reduced or at a complete standstill. But what happens to safety-related systems, such as those in the pharmaceutical or food industries, which must not stand still and are designed in such a way that they cannot fail? How can the risk of breakdowns and downtimes be minimized? Or in the event of failure, how can the damage to people and the environment be limited or, in general, the operational sequence maintained?
Digitalization: curse or blessing?
When considering process engineering plants, one is repeatedly confronted with buzzwords such as «Industry 4.0», «digitalization», «digital transformation», «IoT», «smart manufacturing», etc. The topic is often discussed controversially and often it is about an either-or dichotomy: either man or the machine and the associated fears. No matter what name you give to digitalization, each term here has one thing in common: intelligently networking separate locations and processes in industrial production using modern information and communication technologies. Process automation is a small but important building block that needs attention. Data can only be consistently recorded, forwarded, and reproduced with robust and reliable measurement technology.
For some time already, topics including sensors, automation, and process control have been discussed in the process industry (PAT) with the aim of reducing downtimes and optimizing the use of resources. However, it is not just about the pure collection of data, but also about their meaningful interpretation and integration into the QM system. Only a consequent assessment and evaluation can lead to a significant increase in efficiency and optimization.
This represents a real opportunity to maintain production processes with reduced manpower in times of crisis. Relevant analyses are automatically and fully transferred to the process. This enables high availability and rapid intervention, as well as the assurance of high quality requirements for both process security and process optimization. In addition, online monitoring of all system components and preventive maintenance activities effectively counteracts a failure.
Learn more about the basics of process analytical technology here