AN-NIR-035
2021-03
Quality Control of Polyols
Chemical-free determination of Hydroxyl Number according to ASTM D6342-12
Summary
Toxic and corrosive chemicals such as p-toluenesulfonyl isocyanate (TSI) and tetrabutylammonium hydroxide are used for the Hydroxyl Number analysis of polyols by titration according to ASTM D4274-16.
This application note demonstrates how the XDS RapidLiquid Analyzer operating in the visible and near-infrared spectral region (Vis-NIR) provides a cost-efficient and fast solution for the determination of the hydroxyl (OH) number of polyols without such toxic materials. With no sample preparation or chemicals needed, Vis-NIR spectroscopy allows for the analysis of polyols in less than a minute.
Result
The obtained Vis-NIR spectra (Figure 2) were used to create prediction models for quantification of the hydroxyl number in polyol samples. The quality of the prediction models was evaluated using correlation diagrams, which display the relationship between the Vis-NIR prediction and primary method values. The respective figures of merit (FOM) display the expected precision of a prediction during routine analysis (Figure 3).
Figures of merit | Value |
---|---|
R2 | 0.998 |
Standard error of calibration | 1.28 mg KOH/g |
Standard error of cross-validation | 1.42 mg KOH/g |
Conclusion
This application note demonstrates the feasibility of NIR spectroscopy for the analysis of the Hydroxyl Number in polyols according to ASTM D6342-12. In comparison to wet chemical methods, running costs are significantly lower when using NIR spectroscopy (Table 3 and Figure 4). Additionally, there is no need to use dangerous chemicals for the analysis as with ASTM D4274-16.
Lab method | NIR method | |
---|---|---|
Number of analyses (per day) | 10 | 10 |
Cost of operator (per hour) | $25 | $25 |
Costs of consumables and chemicals OH number | $6 | $1 |
Time spent per analysis | 5 min | 1 min |
Total running costs (per year) | $18,188 | $2,063 |